Abstract
Two standard approaches to predicting the expected values of simulation outputs are either execution of the simulation itself or the use of a metamodel. In this work we propose a methodology that enables both approaches to be combined. When a prediction for a new input is required the procedure is to augment the metamodel forecast with additional simulation outputs for a given input. The key benefit of the method is that it is possible to reach the desired prediction accuracy at a new input faster than in the case when no initial metamodel is present. We show that such a procedure is computationally simple and can be applied to, for instance, web-based simulations, where response time to user actions is often crucial.In this analysis we focus on stochastic kriging metamodels. We show that if this type of metamodel is used and we assume that its metaparameters are fixed, then updating such a metamodel with new observations is equivalent to a Bayesian forecast combination under the known variance assumption. Additionally we observe that using metamodel predictions of variance instead of point estimates for estimation of stochastic kriging metamodes can lead to improved metamodel performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.