Abstract

Multiphase pumps are used as an important tool for natural gas hydrate extraction owing to their excellent gas–liquid mixing and transport properties. This paper proposes an adaptive response surface-based integrated optimization design method. A model pump is designed based on the axial flow pump design theory. The model pump is numerically simulated and analyzed to obtain its performance parameters. Then the structural and performance parameters of the pump are parameterized to establish a closed-loop input–output system. Based on this closed-loop system, a sensitivity analysis is performed on the structural parameters of the impeller and guide vane, and the parameters that affect the performance of the gas–liquid hybrid pump the most are derived. The Sparse Grid method was introduced to design the experiment and construct the approximate model. The structural parameters of the impeller and guide vane are used as design variables to optimize the pressure increment and efficiency of the pump. After optimization, the pressure increment of the multiphase pump was increased by 10.78 KPa and the efficiency was increased by 0.89% compared to the original model. Finally, we validate the accuracy of the optimized model with tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.