Abstract

Although EEG source imaging (ESI) has become more popular over the last few years, sphenoidal electrodes (SPE) have never been incorporated in ESI using realistic head models. This is in part because of the true locations of these electrodes are not exactly known. In this study, we demonstrate the feasibility of determining the true locations of SPE and incorporating this information into realistic ESI. The impact of including these electrodes in ESI in mesial temporal lobe epilepsy is also discussed. Seventeen patients were retrospectively selected for this study. To determine the positions of SPE in each case, two orthogonal x-rays (sagittal and coronal) of the SPE needle stilette were taken in the presence of previously digitized scalp electrodes. An in-house computer program was then used to find the locations of the tip of the needle stilette relative to the surface electrodes. These locations were then incorporated in a realistic head model based on the finite element method. EEG source imaging was then performed using averaged spikes for included patients suspected of having mesial temporal lobe epilepsy. Including SPE significantly shifted the ESI result even in the presence of subtemporal electrodes, resulting in an inferior and mesial displacement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call