Abstract
Monoclonal antibodies provide a powerful tool for the identification and analysis of novel cell-surface molecules. We present here a method for antigen preparation and an immunization protocol that facilitates generation of mAb reactive with cell-surface molecules of low abundance and/or low antigenicity. The procedure involves isolation and extensive fractionation of cell-surface and detergent-soluble extracellular-matrix molecules prior to immunization. Cell-surface proteins on intact tissue are biotin-labeled using a reagent that does not penetrate cells. Avidin affinity chromatography is then used to purify these biotinylated molecules. Size-exclusion HPLC is used to separate these surface molecules on the basis of apparent molecular mass. Finally, immunization with antigen coupled to keyhole-limpet hemocyanin is combined with long-term booster immunizations to generate a hyperimmune response resulting in high-affinity IgG. A test application of this approach was aimed at the generation of mAb against cell-surface molecules of approximately 135 kDa in the developing chicken retinotectal system. Immunochemical analyses using antibodies produced by this approach which showed restricted patterns of tissue staining reveal that mAb were generated against all previously identified immunoglobulin superfamily molecules of this size in this system. Furthermore, we produced many additional antibodies that labeled retinotectal tissue in novel staining patterns. In the two cases analyzed in detail, these new patterns reflect the distributions of previously uncharacterized members of the immunoglobulin superfamily. The success of this initial study suggests that this method may represent a broadly applicable approach towards the preparation of extensive libraries of antibodies against cell-surface molecules expressed on cells from numerous sources.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.