Abstract
Within the framework of the approach proposed in the first part of the work, the two-dimensional boundary-value problem for an isotropic body with noncanonical elastic inclusion is reduced to a finite system of linear algebraic equations. It is shown that the solution of this problem for elastic inclusions with small radius of curvature at the tip and/or cusps describes the intensity and concentration of stresses in the composition. For some special examples, we reveal the influence of elastic properties of the components of the composition and configuration of the inclusions on its local stress-strain state. It is also established that, unlike the method of perturbation of the shape of the boundary, this method is applicable to the determination of the concentration and intensity of stresses in the vicinity of the tips of elastic inclusions with small radii of curvature, including the inclusions whose elastic properties are close to the elastic properties of the matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.