Abstract

A longwall gateroad roof support design method for roadway development and panel extraction is demonstrated. It is a hybrid numerical and empirical method called gateroad roof support model (GRSM), where specification of roof support comes from charts or equations. GRSM defines suggested roof support densities by linking a rock-mass classification with an index of mining-induced stress, using a large empirical database of Bowen Basin mining experience. Inherent in the development of GRSM is a rock-mass classification scheme applicable to coal measure strata. Coal mine roof rating (CMRR) is an established and robust coal industry standard, while the geological strength index (GSI) may also be used to determine rock-mass geomechanical properties. An elastic three-dimensional numerical model was established to calculate an index of mining induced stress, for both roadway development and longwall retreat. Equations to calculate stress index derived from the numerical modelling have been developed. An industry standard method of quantifying roof support is adopted as a base template (GRSUP). The statistical analyses indicated that an improved quantification of installed support can be gained by simple modifications to the standard formulation of GRSUP. The position of the mathematically determined stable/failed boundary in the design charts can be changed depending on design criteria and specified risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.