Abstract
Summary. Body wave synthetic siesmograms for laterally varying media are computed by means of a slowness implementation of the extended WKBJ (EWKBJ) theory of Frazer & Phinney. An EWKBJ seismogram is computed by first tracing rays through a particular model to obtain conventional ray information (travel time, ray end point, ray slowness) and then using these data in the finite frequency integral expression for the EWKBJ seismogram. The EWKBJ seismograms compare favourably to geometrical ray theory (GRT) seismograms but are significantly better because of the finite frequency nature of the EWKBJ calculation. More realistic behaviour is obtained with EWKBJ seismograms at normal seismic frequencies near caustics, where the GRT amplitude is infinite, and within geometrical shadow zones where GRT predicts zero amplitudes. In addition the EWKBJ calculation is more sensitive than GRT to focuses and defocuses in the ray field. The major disadvantage of the EWKBJ calculation is the additional computer time over that of GRT, necessary to calculate one seismogram although an EWKBJ seismogram costs much less to compute than a reflectivity seismogram. Another disadvantage of EWKBJ theory is the generation of spurious, non-geometrical phases that are associated with rapidly varying lateral inhomogeneities. Fortunately the amplitudes of these spurious phases are usually much lower than that of neighbouring geometrical phases so that the spurious phases can usually be ignored. When this observation is combined with the moderately increased computational time of the EWKBJ calculation then the gain in finite frequency character significantly outweighs any disadvantages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.