Abstract

Anhydrous AlCl 3 was used to increase the reducing ability of sodium borohydride (NaBH 4) for removing oxygen functional groups on graphene oxide (GO) at a reaction temperature below 150 °C, which provided an extendable, mild, and controllable route for large-scale production of graphene. The influences of reducing temperature and reducing time on the electrical conductivity of reduced GO were examined. Structural evolution during the reduction of GO was studied by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, and elemental analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.