Abstract

Distributed anomaly detectors are deployed in critical infrastructure to raise alerts when the underlying plant deviates from its expected behaviour. A novel method, referred to as SCM, that uses well defined state and command mutation operators, is proposed to test such detectors prior to their deployment. Cyber-attacks, each modelled as a timed-automaton, serve as reference attacks. A potentially large set of attacks is then created by systematically applying the mutation operators to each reference attack. In a case study, SCM was applied to a timed-automata model of a water treatment plant to assess its effectiveness in testing a distributed anomaly detector. Results attest to the value of SCM in identifying weaknesses in an anomaly detector, prior to its deployment, and improving its effectiveness in detecting process anomalies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.