Abstract
Phase unwrapping technology plays an important role in phase measurement profilometry. The unwrapping results directly affect the measurement accuracy. With the development of deep learning theory, it is opening a new direction to phase unwrapping algorithm. In this paper, a new neural network model based on an improved generation adversarial network (iGAN) is proposed for phase unwrapping. Compared with traditional methods, it can effectively suppress the influence of noise such as shadows, and does not need any referenced grating information. In addition, it can realize the phase unwrapping with a single image. Specifically, the algorithm is verified by the three-dimensional reconstruction with structured light based on the simulation data. The results indicate that the proposed method can successfully unwrap the phase via a single image. It also can well suppress the influence of frequency and shadows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.