Abstract

Boys and Handy [1] have discussed the solution of the bivariational equations with restricted numerical integration. One of the weaknesses of the method was that in the numerical summations over points, some points arose with r ij= 0 and non-zero weights. This makes the method quite impractical for the Schrodinger Hamiltonian (because of the singularity at r ij= 0), and it cannot be advantageous for the transcorrelated Hamiltonian C−1HC because there will be some discontinuous higher derivatives at r ij=0. Here it is shown how the symmetry of cylindrically symmetric molecules can be used to eliminate such points, without losing any of the advantages of the overall method, such as the convergence of the eigensolutions. It is also shown how the primary numerical integration points (z i, ri) may be chosen in any calculation such that each is associated with an equal amount of one-electron density. The choice of the angular coordinates are governed by the removal of the r ij=0 points and maintaining the natural orthogonality between orbitals of different symmetry types. The method has been programmed and found to be practical, although no new molecular calculations have yet been performed. It is to be hoped that these points will give a basis for new transcorrelated calculations on diatomic molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call