Abstract

8-Hydroxy-2'-deoxyguanosine (8OHdG), one of the major oxidative DNA lesions induced by radical agents, is commonly used as a biomarker for oxidative stress, nowadays preferably in urine. In the absence of a commercially available internal standard a micro-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (micro-HPLC/ESI-MS/MS) method, suitable for routine analysis of 8OHdG in human urine using external calibration, was developed. Evaluation of the matrix effect showed that the method allows highly sensitive and accurate quantitation despite the absence of an internal standard. HPLC analysis was performed using gradient elution at a flow rate of 10 microL min(-1) using a capillary reversed-phase column and an injection volume of 0.5 microL, with detection of 8OHdG in positive multiple reaction monitoring (MRM) mode. The absolute limit of detection was 0.35 fmol using m/z 168 as a quantifier (fragment) ion. A linear (R2> 0.999) calibration curve in urine was obtained over a range 0.2-10 ng mL(-1). This method is about 20 times more sensitive than previously described procedures, and is characterized by high accuracy (mean 90%) and good reproducibility (RSD <10%). The optimized method was applied to determination of 8OHdG in 18 urinary samples derived from three healthy volunteers. 8OHdG urinary excretion ranged from 3.0-7.9 microg/day, and a large intra-individual variation was found. This method, which effectively circumvents the need for isotopically labeled 8OHdG (internal standard), is suitable for routine monitoring of exposure to DNA-damaging factors in a large number of subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call