Abstract

Lugu Lake is one of the best plateau lakes in China in terms of water quality, but in recent years the eutrophication of Lugu Lake has accelerated due to high nitrogen and phosphorus loads. This study aimed to determine the eutrophication state of Lugu Lake. Specifically, the spatio-temporal variations of nitrogen and phosphorus pollution during the wet and dry seasons were investigated in Lianghai and Caohai, and the primary environmental effect factors were defined. Adopting the endogenous static release experiments and the exogenous improved export coefficient model, a novel approach (a combination of internal and external sources) was developed for the estimation of nitrogen and phosphorus pollution loads in Lugu Lake. It was indicated that the order of nitrogen and phosphorus pollution in Lugu Lake was Caohai > Lianghai and dry season > wet season. Dissolved oxygen (DO) and chemical oxygen demand (CODMn) were the main environmental factors causing nitrogen and phosphorus pollution. Endogenous nitrogen and phosphorus release rates in Lugu Lake were 668.7 and 42.0 t/a, respectively, and exogenous nitrogen and phosphorus input rates were 372.7 and 30.8 t/a, respectively. The contributions of pollution sources, in descending order, were sediment > land-use categories > residents and livestock breeding > plant decay, of which sediment nitrogen and phosphorus loads accounted for 64.3 % and 57.4 %, respectively. Regulating the endogenous release of sediment and obstructing the exogenous input from shrubland and woodland are emphasized for the management of nitrogen and phosphorus contamination in Lugu Lake. Thus, this study can serve as a theoretical foundation and technical guide for eutrophication control in plateau lakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.