Abstract

Multicellular tumour cell spheroids embedded within three-dimensional (3D) hydrogels or extracellular matrices (ECM) are widely used as models to study cancer growth and invasion. Standard methods to embed spheroids in 3D matrices result in random placement in space which limits the use of inverted fluorescence microscopy techniques, and thus the resolution that can be achieved to image molecular detail within the intact spheroid. Here, we leverage UV photolithography to microfabricate PDMS (polydimethylsiloxane) stamps that allow for generation of high-content, reproducible well-like structures in multiple different imaging chambers. Addition of multicellular tumour spheroids into stamped collagen structures allows for precise positioning of spheroids in 3D space for reproducible high-/super-resolution imaging. Embedded spheroids can be imaged live or fixed and are amenable to immunostaining, allowing for greater flexibility of experimental approaches. We describe the use of these spheroid imaging chambers to analyse cell invasion, cell-ECM interaction, ECM alignment, force-dependent intracellular protein dynamics and extension of fine actin-based protrusions with a variety of commonly used inverted microscope platforms. This method enables reproducible, high-/super-resolution live imaging of multiple tumour spheroids, that can be potentially extended to visualise organoids and other more complex 3D in vitro systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.