Abstract

BackgroundThe gold standard for malaria diagnosis is the examination of thick and thin blood films. Thick films contain 10 to 20 times more blood than thin films, correspondingly providing increased sensitivity for malaria screening. A potential complication of thick film preparations is sloughing of the blood droplet from the slide during staining or rinsing, resulting in the loss of sample. In this work, two methods for improving thick film slide adherence (‘scratch’ (SCM) and ‘acetone dip’ (ADM) methods) were compared to the ‘standard method’ (SM) of thick film preparation.MethodsStandardized blood droplets from 26 previously examined EDTA whole blood specimens (22 positive and four negative) were concurrently spread on glass slides using the SM, ADM, and SCM. For the SM and ADM prepared slides, the droplet was gently spread to an approximate 22 millimeters in diameter spot on the slide using the edge of a second glass slide. For the SCM, the droplet was spread by carefully grinding (or scratching) it into the slide with the point of a second glass slide. Slides were dried for one hour in a laminar flow hood. For the ADM, slides were dipped once in an acetone filled Coplin jar and allowed to air dry. All slides were then Giemsa-stained and examined in a blinded manner. Adherence was assessed by blinded reviewers.ResultsNo significant or severe defects were observed for slides prepared with the SCM. In contrast, 8 slides prepared by the ADM and 3 prepared using the SM displayed significant or severe defects. Thick films prepared by the three methods were microscopically indistinguishable and concordant results (positive or negative) were obtained for the three methods. Estimated parasitaemia of the blood samples ranged from 25 to 429,169 parasites/μL of blood.ConclusionsThe SCM is an inexpensive, rapid, and simple method that improves the adherence of thick blood films to standard glass slides without altering general slide preparation, microscopic appearance or interpretability. Using the SCM, thick films can be reliably examined less than two hours after sample receipt. This represents a significant diagnostic improvement over protocols requiring extended drying periods.

Highlights

  • The gold standard for malaria diagnosis is the examination of thick and thin blood films

  • Blood droplet adherence An adherence score was assigned to each slide in blinded fashion

  • Slides prepared with scratch method (SCM) displayed both a lower frequency and a lesser severity of blood droplet adherence defects than slides prepared by the standard method’ (SM) or Acetone dip method (ADM) (Figure 2)

Read more

Summary

Introduction

The gold standard for malaria diagnosis is the examination of thick and thin blood films. The standard malaria blood films are the thin Each of these suggested modifications in technique have potential advantages and disadvantages. Extending the drying time of the thick film beyond the minimum necessary time is a simple and cost effective method that may improve adherence of the droplet, but it works directly counter to the idea of blood film examination as a rapid diagnostic procedure and leads unavoidably to a delay in diagnosis (and potentially treatment) if parasitaemia is not evident by examination of concurrently prepared thin film slides. There are several references in the literature to either methanol or acetone washes which are used to quickly dehydrate and partially ‘fix’ the thick blood films [8] It is not clear if this technique has been widely used, but a commonly used parasitology laboratory reference suggests that quick dips in acetone (no more than two) may improve the adherence of thick films [8]. Iqbal et al have found that incorporation of three acetone dips in a rapid Giemsa staining protocol led to poorer droplet adherence than a standard Giemsa staining technique without acetone [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.