Abstract
In this paper we employ the Euclidean division for polynomials to recover uniquely a Jacobi matrix in terms of the mixed spectral data consisting of its partial entries and the information given on its full spectrum together with a subset of eigenvalues of its truncated matrix obtained by deleting the last row and last column, or its rank-one modification matrix modified by adding a constant to the last element. A necessary and sufficient condition is provided for the existence of the inverse problem. A numerical algorithm and a numerical example are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.