Abstract

In this paper we propose a method for real-time blob detection in large images with low memory cost. The method is suitable for implementation on the specialized parallel hardware such as multi-core platforms, FPGA and ASIC. It uses parallelism to speed-up the blob detection. The input image is divided into blocks of equal sizes to which the maximally stable extremal regions (MSER) blob detector is applied in parallel. We propose the usage of multiresolution analysis for detection of large blobs which are not detected by processing the small blocks. This method can find its place in many applications such as medical imaging, text recognition, as well as video surveillance or wide area motion imagery (WAMI). We explored the possibilities of usage of detected blobs in the feature-based image alignment as well. When large images are processed, our approach is 10 to over 20 times more memory efficient than the state of the art hardware implementation of the MSER.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.