Abstract

We demonstrate a fast and cost-effective technique to perform three dimensional (3D) scanning and replication of large paleontological specimens, in this case the entire skull of a Tyrannosaurus rex (T.rex) with a volume in the range of 2 m3. The technique involves time-of-flight (TOF) depth sensing using the Kinect scanning module commonly used in gesture recognition in gaming. Raw data from the Kinect sensor was captured using open source software and the reconstruction was done rapidly making this a viable method that can be adopted by museums and researchers in paleontology. The current method has the advantage of being low-cost as compared to industrial scanners and photogrammetric methods but also of accurately scanning a substantial volume range which is well suited for large specimens. The depth resolution from the Kinect sensor was measured to be around 0.6 mm which is ideal for scanning large specimens with reasonable structural detail. We demonstrate the efficacy of this method on the skull of FMNH PR 2081, also known as SUE, a near complete T.rex at the Field Museum of Natural History.

Highlights

  • The field of paleontology has transformed in the last few years as a result of the developments in 3D scanning technology and rendering software that have enhanced the quality of virtual models [1,2,3,4]

  • These techniques are increasingly seen in museums and research labs due to the compact nature of some of the imaging devices [3, 4]. 3D scanning can provide depth maps in a non-invasive, non-contact manner which is attractive for studying paleontological specimens due to their delicate physical properties

  • We present a method for 3D scanning that is well suited for paleontology and has the following advantages; a) It has an short acquisition time of 60-120s even for large specimens, b) Since the scanner is compact so it can be moved around the specimen on a tripod or adapted to a body-mounted wearable geometry; c) The entire set-up being low-cost and the availability of free scanning and post-processing software

Read more

Summary

Introduction

The field of paleontology has transformed in the last few years as a result of the developments in 3D scanning technology and rendering software that have enhanced the quality of virtual models [1,2,3,4]. A two dimensional (2D) image is easy to capture, interpret and is still a useful method of analysis in paleontology research [5,6,7]. Recent studies have shown that 3D scanning and analysis of specimens can provide rich information which can be beneficial in a range of studies [8]. These techniques are increasingly seen in museums and research labs due to the compact nature of some of the imaging devices [3, 4]. 3D scanning can provide depth maps in a non-invasive, non-contact manner which is attractive for studying paleontological specimens due to their delicate physical properties.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call