Abstract

Rapid assessment of the distribution of earthquake-triggered landslides is an important component of effective disaster mitigation. The effort should be based on both seismic landslide susceptibility and the ground shaking intensity, which is usually measured by peak ground acceleration (PGA). In this paper, we address this issue by analyzing data from the Mw6.1 2014 Ludian, China earthquake. The Newmark method of rigid-block modeling was applied to calculate the critical acceleration of slopes in the study area, which serve as measurement of slope stability under seismic load. The assessment of earthquake-triggered landslide hazard was conducted by comparing these critical accelerations with the distribution of known PGA values. The study area was classified into zones of five levels of landslide hazard: high, moderate high, moderate, light, and very light. Comparison shows that the resulting landslide hazard zones agree with the actual distribution of earthquake-triggered landslides. Nearly 70% of landslides are located in areas of high and moderately high hazard, which occupy only 17% of the study region. This paper demonstrates that using PGA, combined with the analysis of seismic landslide susceptibility, allows a reliable assessment of earthquake-triggered landslides hazards. This easy-operation mapping method is expected to be helpful in emergency preparedness planning, as well as in seismic landslide hazard zoning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.