Abstract

To understand the overall processes behind the decomposition of state-of-the-art organic liquid electrolytes in lithium ion batteries (LIBs), it is necessary to investigate and quantify the permanent gases and light hydrocarbons evolving during electrolyte decomposition. In this work a convenient way of sampling gas from pouch cells without any previous preparation of the cell as well as a comprehensive gas chromatographic (GC) investigation of the gas phase is shown. A barrier discharge ionization detector (BID) was utilized for gas quantification and a multi component gas standard in combination with a gas mixing device was implemented to prepare calibration standards for validation. Therefore, sensitivity, linearity and reproducibility as well as the limits of detection (LOD) and limits of quantification (LOQ) were determined.Gas samples from pouch cells using LiNi0.6Mn0.2Co0.2O2 as cathode material and natural graphite (NMC622 ∣∣ NG) as anode material were analysed after formation. Gas volume and gas composition are key factors for a sufficient formation of LIBs and of interest for research with respect to the development of new materials and additives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.