Abstract
The plant apoplast has a crucial role in photosynthesis and respiration due to its vital function in gas exchange and transpiration. The apoplast is also a dynamic environment that participates in many ion and nutrient transport processes via plasma membrane-localized proteins. Furthermore, diverse microbes colonize the plant apoplast, including the hemibiotrophic bacterial pathogen, Pseudomonas syringae pv. tomato (Pto) strain DC3000. Pto DC3000 initiates pathogenesis upon moving through stomata into the apoplast and then proliferating to high levels. Here we developed a centrifugation-based method to isolate and quantify the apoplast fluid in Arabidopsis leaves, without significantly damaging the tissue. We applied the simple apoplast extraction method to demonstrate that the Pto DC3000 type III bacterial effectors AvrE1 and HopM1 induce hydration of the Arabidopsis apoplast in advance of macroscopic water-soaking, disruption of host cell integrity, and disease progression. Finally, we demonstrate the utility of the apoplast extraction method for isolation of bacteria proliferating in the apoplast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.