Abstract
The ability to transform plant mitochondrial genomes has many benefits. Although delivery of foreign DNA to mitochondria is presently very difficult, it is now possible to knock out mitochondrial genes using mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs). Such knockouts have been achieved by a genetic transformation of mitoTALENs encoding genes into the nuclear genome. Previous studies have shown that double-strand breaks (DSBs) induced by mitoTALENs are repaired by ectopic homologous recombination. As a result of DNA repair by homologous recombination, a portion of the genome containing the mitoTALEN target site is deleted. The deletion and repair process cause the mitochondrial genome to become more complex. Here, we describe a method for identifying the ectopic homologous recombination events that occur following the repair of double-strand breaks induced by mitoTALENs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.