Abstract

Aim: A method to determine the point spread function (PSF) of an imaging system based on a set of 3-D Gaussian functions is presented for a robust estimation of the recovery corrections for accurate activity quantification in positron emission tomography (PET) and single-photon emission computed tomography systems. Materials and Methods: The spatial resolution of the ALBIRA II PET subsystem was determined using a 370-kBq 22Na point source. The measured data were reconstructed with a maximum-likelihood expectation-maximization algorithm. The PSF was calculated based on the National Electrical Manufacturing Association (NEMA) NU-4 2008 protocol and on alternative methods based on three 3-D fitting functions for the xyz-directions: 1) a 3-D Gaussian function (3-D 1-Gauss) and convolutions of this function with a pixel size (3-D ${\text {Gauss}}_{p}$ ) or source dimension of O 0.25 mm (3-D ${\text {Gauss}}_{s}$ ); 2) the sum of two Gaussian functions (3-D 2-Gauss); and 3) three Gaussian functions (3-D 3-Gauss). Goodness of fit and the method based on an Akaike information criterion were used for choosing the best function. A MATLAB-based mathematical source simulation study was performed to quantify the relevance of PSFs calculated from the different methods. Results: Based on the PSFs calculated from the NEMA protocol, the full-width at half-maximum (FWHM) in xyz-directions were 1.68, 1.51, and 1.50 mm. The corresponding results using 3-D Gauss and 3-D ${\text {Gauss}}_{s}$ functions both were (1.87 ± 0.01), (1.70 ± 0.01), and (1.50 ± 0.01) mm and for 3-D ${\text {Gauss}}_{p}$ were (1.84 ± 0.01), (1.67 ± 0.01), and (1.47 ± 0.01) mm. The FWHMs calculated with 3-D 2-Gauss and 3-D 3-Gauss were (1.78 ± 0.01), (1.74 ± 0.01), and (1.83 ± 0.01) mm and (1.76 ± 0.03), (1.72 ± 0.03), and (1.78 ± 0.03) mm, respectively. All coefficients of variations of the fit parameters were ≤29% and the adjusted $R^{2}$ were ≥0.99. Based on Akaike weights $w_{i}$ , the 3-D 3-Gauss method was best supported by the data ( $w_{i} = 100$ %). The simulation study showed a relative error in quantification of spherical lesions in the range of 15%–45% for lesions of diameters 1–5 mm compared to the PSFs based on the NEMA method. Conclusion: An alternative method to calculate the PSFs of imaging systems to accurately correct for recovery effects is presented. The proposed method includes choosing and fitting of 3-D functions, validation of fitting quality, and choosing the function best supported by the data along with an estimation of the uncertainty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call