Abstract
The black-footed cat (Felis nigripes) is endemic to the arid regions of southern Africa. One of the world's smallest wild felids, the species occurs at low densities and is secretive and elusive, which makes ecological studies difficult. Genetic data could provide key information such as estimates on population size, sex ratios, and genetic diversity. In this study, we test if microsatellite loci can be successfully amplified from scat samples that could be noninvasively collected from the field. Using 21 blood and scat samples collected from the same individuals, we statistically tested whether nine microsatellites previously designed for use in domestic cats can be used to identify individual black-footed cats. Genotypes recovered from blood and scat samples were compared to assess loss of heterozygosity, allele dropout, and false alleles resulting from DNA degradation or PCR inhibitors present in scat samples. The microsatellite markers were also used to identify individuals from scats collected in the field that were not linked to any blood samples. All nine microsatellites used in this study were amplified successfully and were polymorphic. Microsatellite loci were found to have sufficient discriminatory power to distinguish individuals and identify clones. In conclusion, these molecular markers can be used to monitor populations of wild black-footed cats noninvasively. The genetic data will be able to contribute important information that may be used to guide future conservation initiatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.