Abstract

An algorithm is proposed for extracting relevant information from near-infrared (NIR) spectra for multivariate calibration of routine components in complex plant samples. The algorithm is a combination of wavelet transform (WT) data compression and a procedure for uninformative variable elimination (UVE). After compression of the NIR spectra by WT, the UVE approach is used to eliminate the irrelevant wavelet coefficients. Finally, a calibration model is built from the retained wavelet coefficients to enable prediction. Because irrelevant information can be removed from the spectra used for multivariate calibration, the model based on the extracted relevant features is better than those obtained with full-spectrum data. Both prediction precision and calculation speed are improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.