Abstract
SUMMARYAn explicit integration algorithm for computations of discontinuous wave propagation in two‐dimensional and three‐dimensional solids is presented, which is designed to trace extensional and shear waves in accordance with their respective propagation speeds. This has been possible by an orthogonal decomposition of the total displacement into extensional and shear components, leading to two decoupled equations: one for the extensional waves and the other for shear waves. The two decoupled wave equations are integrated with their CFL time step sizes and then reconciled to a common step size by employing a previously developed front‐shock oscillation algorithm that is proven to be effective in mitigating spurious oscillations. Numerical experiments have demonstrated that the proposed algorithm for two‐dimensional and three‐dimensional wave propagation problems traces the stress wave fronts with high‐fidelity compared with existing conventional algorithms. Copyright © 2013 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.