Abstract

Matching of a two-stage turbocharging system is important for high efficiency engines because the turbocharger is the most effective method of exhaust heat recovery. In this study, we propose a method to match a two-stage turbocharging system for high efficiency over the entire range of operational conditions. Air flow is an important parameter because it influences combustion efficiency and heat load performance. First, the thermodynamic parameters of the engine and the turbocharging system are calculated in eight steps for selecting and matching the turbochargers. Then, by designing the intercooler intensity, distribution of pressure ratio, and compressor operational efficiency, it is ensured that the turbochargers not only meet the air flow requirements but also operate with high efficiency. The concept of minimum total drive power of the compressors is introduced at a certain boost pressure. It is found that the distribution of pressure ratio of the high- and low-pressure (LP) turbocharger should be regulated according to the engine speed by varying the rack position of the variable geometry turbocharger (VGT) to obtain the minimum total drive work. It is verified that two-stage turbochargers have high efficiency over the entire range of operational conditions by experimental research. Compared with the original engine torque, low-speed torque is improved by more than 10%, and the engine low fuel consumption area is broadened.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.