Abstract
Digital health applications can improve quality and effectiveness of healthcare, by offering a number of new tools to users, which are often considered a medical device. Assuring their safe operation requires, amongst others, clinical validation, needing large datasets to test them in realistic clinical scenarios. Access to datasets is challenging, due to patient privacy concerns. Development of synthetic datasets is seen as a potential alternative. The objective of the paper is the development of a method for the generation of realistic synthetic datasets, statistically equivalent to real clinical datasets, and demonstrate that the Generative Adversarial Network (GAN) based approach is fit for purpose. A generative adversarial network was implemented and trained, in a series of six experiments, using numerical and categorical variables, including ICD-9 and laboratory codes, from three clinically relevant datasets. A number of contextual steps provided the success criteria for the synthetic dataset. A synthetic dataset that exhibits very similar statistical characteristics with the real dataset was generated. Pairwise association of variables is very similar. A high degree of Jaccard similarity and a successful K-S test further support this. The proof of concept of generating realistic synthetic datasets was successful, with the approach showing promise for further work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.