Abstract

Drawing inspiration from cellular compartmentalization, enzymatic compartments play a pivotal role in bringing enzymes and substrates into confined environments, offering heightened catalytic efficiency and prolonged enzyme lifespan. Previously, we engineered bioinspired enzymatic compartments, denoted as TPE-Q18H@GPs, achieved through the spatiotemporally controllable self-assembly of the catalytic peptide TPE-Q18H within hollow porous glucan particles (GPs). This design strategy allows substrates and products to freely traverse, while retaining enzymatic aggregations. The confined environment led to the formation of catalytic nanofibers, resulting in enhanced substrate binding affinity and a more than two-fold increase in the second-order kinetic constant (kcat/Km) compared to TPE-Q18H nanofibers in a dispersed system. In this work, we will introduce how to synthesize the above-mentioned enzymatic compartments using salt-responsive catalytic peptides and GPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.