Abstract

Abstract Ocean acidification poses a major threat to the structure and diversity of marine ecosystems. The marine seabed sustains important ecosystem functions, and so understanding the sensitivity to increased pCO2 within benthic invertebrates is critical for informing future management strategies. Here, we explore a traits-based approach for estimating the sensitivity of benthic taxa to ocean acidification, using data from the western area of the North Sea. We selected 56 taxa across 11 taxonomic groups representative of the various habitats found in the region. Biological traits considered sensitive to elevated pCO2 were identified from literature review, and the taxa were scored for each trait to produce a total relative sensitivity (TRS) index. We investigated differences in sensitivity between the taxa and across habitats and explored whether sensitivity was spatially aggregated. Our analyses indicated that benthic species are sensitive to acidification, with 51% of the taxa scoring in the top three TRS bands overall, and hot spots of sensitivity being more widely distributed across the region than corresponding "cold spots" (low sensitivity). The opportunities and limitations of the approach are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.