Abstract

Hydraulic fracturing technology, a technique for increasing productivity applicable in low-permeability oil-gas reservoir, has been used in the extraction of coal seam methane in underground coal mines. However, because of the more complex structure of coal seam compared with that of oil-gas reservoir, the hydrofracture propagation can easily extend to roof-floor rocks, limiting the range of permeability and making damages of roof-floor rocks in subsequent coal mining and support difficulty. How to control the hydrofracture propagation well-aligned in a large area of coal seam has become the key to long-time highly effective extraction of coal seam methane. Firstly, it starts with the perspective of stress field of crack tip, by means of thermal elasticity fracture mechanics theory, to get the stress intensity factor of hydrofracture tip while taking pore pressure into consideration. Next, a laboratory fracturing experiment using sandstone specimens was conducted to study the impact of non-uniform pore pressure on the direction of hydrofracture propagation. Lastly, a numerical simulation software RFPA2D-Flow is adopted to further verify the theoretical and experimental results. The study shows that pore pressure can effectively increase the stress intensity factor of the crack tip, the more pressure of pore, the smaller the needed fluid pressure for hydrofracture propagation. In a large area, affected by the direction and distribution of pore pressure gradient, the hydrofracture will propagate along higher pore pressure area. A method is put forward for controlling hydrofracture propagation in underground coal mines accordingly. Meanwhile, the matching relationship between the space between boreholes and the water injection maintaining pressure and maintaining time are studied together, with methods and steps for calculating key fracture parameters established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call