Abstract

This paper proposes a novel method for enhancing the dynamic range of structured-light cameras to solve the problem of highlight that occurs when 3D modeling highly reflective objects using the structured-light method. Our method uses the differences in quantum efficiency between R, G, and B pixels in the color image sensor of a monochromatic laser to obtain structured-light images of an object under test with different luminance values. Our approach sacrifices the resolution of the image sensor to increase the dynamic range of the vision system. Additionally, to enhance our system, we leverage the backgrounds of structured-light stripe pattern images to restore the color information of measured objects, whereas the background is often removed as noise in other 3D reconstruction systems. This reduces the number of cameras required for 3D reconstruction and the matching error between point clouds and color data. We modeled both highly reflective and non-highly reflective objects and achieved satisfactory results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call