Abstract

Construction of user-defined long circular single stranded DNA (cssDNA) and linear single stranded DNA (lssDNA) is important for various biotechnological applications. Many current methods for synthesis of these ssDNA molecules do not scale to multikilobase constructs. Here we present a robust methodology for generating user-defined cssDNA employing Golden Gate assembly, a nickase, and exonuclease degradation. Our technique is demonstrated for three plasmids with insert sizes ranging from 2.1 to 3.4 kb, requires no specialized equipment, and can be accomplished in 5 h with a yield of 33%-43% of the theoretical. To produce lssDNA, we evaluated different CRISPR-Cas9 cleavage conditions and reported a 52 ± 8% cleavage efficiency of cssDNA. Thus, our current method does not compete with existing protocols for lssDNA generation. Nevertheless, our protocol can make long, user-defined cssDNA readily available to biotechnology researchers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.