Abstract

Electric vehicles (EVs) are part of the solution to achieve global carbon emissions reduction targets, and the number of EVs is increasing worldwide. Increased demand for EV charging can challenge the grid capacity of power distribution systems. Smart charging is therefore becoming an increasingly important topic, and availability of high-grade EV charging data is needed for analysing and modelling of EV charging and related energy flexibility. This study provides a set of methodologies for transforming real-world and commonly available EV charging data into easy-to-use EV charging datasets necessary for conducting a range of different EV studies. More than 35,000 residential charging sessions are analysed. The datasets include realistic predictions of battery capacities, charging power, and plug-in State-of-Charge (SoC) for each of the EVs, along with plug-in/plug-out times, and energy charged. Finally, we analyse how residential charging behaviour is affected by EV battery capacity and charging power. The results show a considerable potential for shifting residential EV charging in time, especially from afternoon/evenings to night-time. Such shifting of charging loads can reduce the grid burden resulting from residential EV charging. The potential for a single EV user to shift EV charging in time increases with higher EV charging power, more frequent connections, and longer connection times. The proposed methods provide the basis for assessing current and future EV charging behaviour, data-driven energy flexibility characterization, analysis, and modelling of EV charging loads and EV integration into power grids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.