Abstract
This paper attempt to generate a representative subset of the Pareto optimal set for multiple objective mixed integer linear programming problem using the weighted L1 norm distance. The procedure presented in this paper is somewhat similar to the one used in the ideal-point methods and its aim is to generate at each iteration the closest-points to the ideal vector corresponding to the decision maker’s initial aspiration level for a new tradeoff parameter. Unlike most of the known algorithms for generating a discrete representation of the Pareto optimal set, the procedure generates at each iteration a nondominated point by solving only one mixed integer linear programming problem. The obtained solution minimizes the weighted L1 norm distance to the ideal vector with respect to the distance between the ideal vector and previously found vectors. More generally, this approach is able to generate all Pareto optimal solutions, where all of the decision variables are restricted to be integer. In order to explain the presented details, several illustrative examples are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.