Abstract

Automatically mapping building footprints has a wide range of applications in many fields. In recent years, the automatic building extraction methods based on deep learning show an absolute advantage over the traditional image segmentation methods due to its high speed and high precision. However, the building footprint extracted by deep learning is just an irregular building mask. There is still much work to be done to transform the building mask into a vector building footprint in the usual sense. One of the most important tasks is to determine the orientation of each side of the building. Most of the current methods are based on the building mask to determine the orientation of each side of the building. The biggest disadvantage of this method is that it completely relies on the building mask which is often unsatisfactory. In this case, the article proposes a method to determine the orientation of each side of the building based on the building mask and line segments, thereby effectively avoiding the danger of relying on the building mask. Experiments show that the proposed method can achieve high-speed and high-precision automatic extraction of building footprints from remote sensing images, saving costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.