Abstract

The paper presents a method for fast calculating the electronic states in two-dimensional quantum structures based on AIIIBV nitrides. The method is based on the representation of electronic states in the form of a linear combination of bulk wave functions of materials, from which quantum structures are made. The parameters and criteria for the selection of bulk wave functions that provides fast convergence of the numerical procedures for calculating the eigenvalues of the quantum Hamiltonian have been considered. The results of the calculations have been given both for one polar InGaN/GaN quantum well and for a system of several quantum wells. Being based on the full band structure of AIIIBV nitrides with a wurtzite-type crystal lattice, the proposed approach takes into account the states far from the center of the Brillouin zone, while preserving the computational efficiency of traditional methods of envelope function in approximating the effective mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.