Abstract

Abstract The planning and development of windfarms require accurate prediction of the thrust coefficient (cT ) of wind turbines, which significantly affects the downstream wake. Traditional methods, such as blade element momentum theory (BEMT), often necessitate detailed geometric information of wind turbines for cT computation, information that is not frequently available, especially in the early stages of windfarm planning. This paper aims to address this challenge by presenting a novel and efficient approach to predict cT for horizontal-axis wind turbines (HAWTs). The proposed method integrates classical momentum theory with power curve data to estimate the average axial induction factor (a), thereby enabling the calculation of cT without requiring detailed geometric information of HAWTs. The method was validated against thirty-five existing pitch-controlled HAWTs, with R2 values ranging from 0.9604 to 0.9989. This validation confirms the accuracy of the method, making it a viable alternative to traditional techniques that demand comprehensive wind turbine geometric details. The method has demonstrated both rapidity and precision in cT computation for turbine wake analysis, ensuring high levels of prediction accuracy and potentially lowering the barrier to entry for windfarm development. Unlike existing models predominantly focused on wind turbine power curves, cT modelling has largely been overlooked. This study makes a unique contribution to the field by proposing a novel method for cT prediction, thereby filling a critical gap in windfarm planning and development. However, while the study shows promising results, further research is warranted to explore its applicability in diverse windfarm scenarios and turbine configurations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.