Abstract

The influences of metal-induced laterally crystallized silicon channel corners on the performance and reliability of thin-film transistors (TFTs) were investigated. It was found that the TFT with the channel width, mostly applied to active matrix organic light-emitting diodes, had weak immunity to electrical stresses because of the heaviest weight of silicide-rich channel corner on the channel width by the geometric effect. The proposed TFT fabrication, which is composed of two consecutive adjacent step switches, makes TFTs practically channel-corner-free, resulting in high reliability. Moreover, it enables TFTs to have more current flow paths that maintain a high performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.