Abstract

The levitation force can directly reflect the levitation performance of high temperature superconducting (HTS) maglev. In the previous studies, the permanent magnet guideway (PMG) was used as the favorite guideway type, whose levitation performance has been studied through many theoretical calculations, simulations, and experiments. In recent years, the feasibility of electromagnetic guideway (EMG) has been proposed and studied. Continuing to use the levitation force calculation method designed for PMG to cope with EMG will cause some problems. In this study, we improved a levitation force calculation method for E-shaped EMG prototypes, whose width of the center pillar was set as a variable to generate different field distributions. The levitation force was then measured under the condition that magnetic fluxes in a certain levitation region were the same. Subsequently, the levitation forces were calculated according to the equivalent model method and compared with measurement results. Afterward, the causes of errors were discussed, and the calculation method was improved with two correction approaches. Finally, factors affecting calculation accuracy were analyzed. The above research results may be helpful for the prediction of levitation performance and structural design of EMGs in an HTS maglev system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call