Abstract
The instrumented indentation test, which measures indentation tensile properties, has attracted interest recently because this test can replace uniaxial tensile test. An international standard for instrumented indentation test has been recently legislated. However, the uncertainty of the indentation tensile properties has never been estimated. The indentation tensile properties cannot be obtained directly from experimental raw data as can the Brinell hardness, which makes estimation of the uncertainty difficult. The simplifying uncertainty estimation model for the indentation tensile properties proposed here overcomes this problem. Though the influence quantities are generally defined by experimental variances when estimating uncertainty, here they are obtained by calculation from indentation load-depth curves. This model was verified by round-robin test with several institutions. The average uncertainties were estimated as 18.9% and 9.8% for the indentation yield strength and indentation tensile strength, respectively. The values were independent of the materials’ mechanical properties but varied with environmental conditions such as experimental instruments and operators. The uncertainties for the indentation yield and tensile strengths were greater than those for the uniaxial tensile test. These larger uncertainties were caused by measuring local properties in the instrumented indentation test. The two tests had the same tendency to have smaller uncertainties for tensile strength than yield strength. These results suggest that the simplified model can be used to estimate the uncertainty in indentation tensile properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.