Abstract

The ambiguity of parameter estimates for the model of a biological system may be due to low sensitivity of the model to perturbations of input data (parameters), which mathematically reflects biological mechanisms of robustness. We developed a novel method for estimating the predictive power of a model with the ambiguity of parameter estimates. The predictions are understood as a correct reproduction of the system behavior by the model when changing input data and parameters. The method is based on the relative sensitivity analysis of the fitted model to stiff parameters of the predicted model. The application principles of our approach are demonstrated using a model for the formation of the mRNA expression pattern of the hb gene in the Drosophila embryo and its ability to predict the hb pattern in the Kr null mutant. The nonlinear nature of the system is simulated by a saturating sigmoid function, which is the cause of low sensitivity. Our method allows us to estimate the predictive power of the model and uncover the causes of poor predictions, as well as choose the relevant level of the model detail in terms of predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.