Abstract

A method was developed for dynamic spectrophotometric measurements in vivo in the presence of non-specific spectral changes due to external disturbances. This method was used to measure changes in mitochondrial respiratory pigment redox states in photoreceptor cells of live, white-eyed mutants of the blowfly Calliphora vicina. The changes were brought about by exchanging the atmosphere around an immobilised animal from air to N2 and back again by a rapid gas exchange system. During an experiment reflectance spectra were measured by a linear CCD array spectrophotometer. This method involves the pre-processing steps of difference spectra calculation and digital filtering in one and two dimensions. These were followed by time-domain principal component analysis (PCA). PCA yielded seven significant time domain principal component vectors and seven corresponding spectral score vectors. In addition, through PCA we also obtained a time course of changes common to all wavelengths-the residual vector, corresponding to non-specific spectral changes due to preparation movement or mitochondrial swelling. In the final step the redox state time courses were obtained by fitting linear combinations of respiratory pigment difference spectra to each of the seven score vectors. The resulting matrix of factors was then multiplied by the matrix of seven principal component vectors to yield the time courses of respiratory pigment redox states. The method can be used, with minor modifications, in many cases of time-resolved optical measurements of multiple overlapping spectral components, especially in situations where non-specific external influences cannot be disregarded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.