Abstract
A novel method for detecting determinism in short time series is developed and applied to investigate determinism in stationary electroencephalogram (EEG) recordings. This method is based on the observation that the trajectory of a time series generated from a differentiable dynamical system behaves smoothly in an embedded state space. The angles between two successive tangent vectors in the trajectory reconstructed from the time series is calculated as a function of time. The irregularity of the angle variations obtained from the time series is estimated using second-order difference plots, and compared with that of the corresponding surrogate data. Using this method, we demonstrate that scalp EEG recordings from normal subjects do not exhibit a low-dimensional deterministic structure. This method can be useful for analyzing determinism in short time series, such as those from physiological recordings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.