Abstract

This study proposes a robust outlier detection method based on the circular median for non-parametric linear-circular regression in case the response variable includes outlier(s) and the residuals are Wrapped-Cauchy distributed. Nadaraya-Watson and local linear regression methods were employed to obtain non-parametric regression fits. The proposed method's performance was investigated by using a real dataset and a comprehensive simulation study with different sample sizes, contamination, and heterogeneity degrees. The method performs quite well in medium and higher contamination degrees, and its performance increases as the sample size and the homogeneity of data increase. In addition, when the response variable of linear-circular regression contains outliers, the Local Linear Estimation method fits the data set better than the Nadaraya Watson method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.