Abstract
Objective: To determine whether red cell movement, as measured by laser Doppler velocimetry, in the capillary net of the beating heart is chaotic. Methods: Using two dog hearts, in situ red blood cell flux was measured at many sites. Simultaneously, epicardial arterial flow and left ventricular pressure were recorded via transit-time flowmeter and catheter manometer, respectively. The presence or absence of chaos was tested by two methods: Lyapunov exponents and correlation dimension. Results: For capillary red cell flux, the Lyapunov was strongly positive at most sites. It was less so for coronary arterial flow and least for left ventricular pressure. Correlation dimension calculation was less able to distinguish the presence or absence of chaos in capillary red cell tissue flux, coronary arterial flow, and left ventricular pressure. Conclusions: Capillary red cell flux (movement of red cells in capillaries) is nonlinear, (i.e., chaotic). This complexity suggests that the primary control for oxygen delivery to cardiac myocytes by red blood cells resides in the microcirculation. Also, capillary red cell flux is bifractal, suggesting an ordering of control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.