Abstract
We present a simple and direct method for non-parametric estimation of a one-dimensional probability density, based on the application of the recent conjugate variables theorem. The method expands the logarithm of the probability density ln P(x|I) in terms of a complete basis and numerically solves for the coefficients of the expansion using a linear system of equations. No Monte Carlo sampling is needed. We present preliminary results that show the practical usefulness of the method for modeling statistical data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.