Abstract

Correcting interferometric synthetic aperture radar (InSAR) interferograms using Global Navigation Satellite System (GNSS) data can effectively improve their accuracy. However, most of the existing correction methods utilize the difference between GNSS and InSAR data for surface fitting; these methods can effectively correct overall long-wavelength errors, but they are insufficient for multiple medium-wavelength errors in localized areas. Based on this, we propose a method for correcting InSAR interferograms using GNSS data and the K-means spatial clustering algorithm, which is capable of obtaining correction information with high accuracy, thus improving the overall and localized area error correction effects and contributing to obtaining high-precision InSAR deformation time series. In an application involving the Central Valley of Southern California (CVSC), the experimental results show that the proposed correction method can effectively compensate for the deficiency of surface fitting in capturing error details and suppress the effect of low-quality interferograms. At the nine GNSS validation sites that are not included in the modeling process, the errors in the ascending track 137A and descending track 144D are mostly less than 15 mm, and the average root mean square error values are 11.8 mm and 8.0 mm, respectively. Overall, the correction method not only realizes effective interferogram error correction, but also has the advantages of high accuracy, high efficiency, ease of promotion, and can effectively address large-scale and high-precision deformation monitoring scenarios.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.