Abstract

A system for construction of E. coli strains with multiple DNA insertions in the chromosome, based on elements of modules for site specific recombination of Tn 1545 and phage λ, has been developed. Circular non-replicating DNA fragments containing the transposon attachment site ( attTn), an excisable cassette with a selectable marker, and a gene of interest integrate randomly into the chromosome of a host E. coli strain when provided with transposon integrase, Int-Tn (the host strain was obtained by insertion of the fragment containing transposon int-Tn gene coding for Int-Tn into the chromosome). Integration of these fragments into the chromosome of int-Tn + cells gives rise to a collection of antibiotic-resistant clones with single insertions at different locations in the chromosome. These insertions are transferred subsequently by P1 transduction into one strain and selected for antibiotic resistance provided by the cassette with the selectable marker. After transduction of each copy, a helper plasmid bearing phage λ xis and int genes is introduced into the cells to excise the drug resistance gene flanked with the λattL and λattR sites from the chromosome. Cells cured of the helper plasmid can undergo the next cycle of P1 transduction/drug resistance gene excision. Each cycle adds another chromosomal copy of the foreign gene. To show the utility of the system, we constructed an E. coli strain bearing several chromosomal copies of lacZ at different locations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.