Abstract

Heating a milligram-sized sample of material at a constant heating rate is usually achieved by controlling the temperature of an electric-resistance furnace with a proportional integral derivative (PID) controller. Here we present a new method for constant-rate heating that is based on a semi-empirical mathematical expression relating sample temperature, heating rate, and electric power supplied to the furnace. This method uses PID control only for second-order corrections of the heating rate. The linearity of the sample temperature vs. time curves obtained by applying this method to a simple furnace setup is the same as the linearity of the curves generated by modern commercial thermogravimetric analyzers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.